Micro-Transfer Printing with x-Chips

<u>Micro Assembly</u> Unlocks New Opportunities for Wafer Fabricated Devices

Elastomer Stamp "Micro-Transfer Printing" (µTP)

Next generation photonics

Edge coupling to a polymer and to an SOI waveguide Complete system on a chip with an LED or a laser

Technology Introduction

X-Celeprint – A Quick Overview

- X-Celeprint develops advanced microelectronic assembly solutions
- Our core technology, Micro Transfer Printing (MTP), invented by Professor John Rogers at the University of Illinois.
- Headquarters are located in Cork, Ireland
- US development site at Research Triangle Park, NC

- What do we offer?
 - MTP technology licensing
 - MTP technical support
 - Prototype construction services
 - MTP stamp production
- What do our partners offer?
 - MTP production tools
 - MTP-ready source material
 - Higher-volume MTP

The Micro Transfer Printing Process

MTP Technology Attributes

- Manipulate objects that are too small, numerous, fragile, or otherwise difficult to handle by other means
- Massively parallel high-throughput micro-assembly
- Decouples growth (high temp, lattice constraints) and usage (glass, plastic, ceramic) of highperformance materials
- Tolerant to wafer-size mismatch
- Uses device source wafer efficiently
- Printing tool scales to large-format target substrates, suitable for high-volume manufacturing
- Effective for "area multiplication" (geometric magnification)

What is Needed for MTP?

Release-Ready Source Material

MTP Stamp

Four main components are needed to enable MTP and create an interconnected solution

- Release-ready x-chip wafer
- MTP Stamp
- MTP Print Tool
- Target wafer / substrate

Target Wafer / Substrate

X-chip Source Wafer Fabrication

Fabrication:

- X-Celeprint partners with X-Fab to use the XT018 SOI process print ready
- X-Celeprint works with other partners to develop similar SOI and III-V capabilities
- X-Celeprint offers prototyping for print-ready source wafers in both North Carolina and Cork Ireland
- X-Celeprint provides technology transfer and training for customers and customer partners

Demonstrated Source

Source wafer

Materials

- Si CMOS on SOI
- InP Optoelectronics
- GaAs Transistors
- GaN RF components
- GaAs Lasers

Methods to Create X-Chips

GaN on Silicon LED undercut with TMAH

- Use wafer with base <100> or <111> crystal plane orientation
- Remove silicon under x-chips with TMAH or KOH Oxide under x-chips acts as a barrier against etch of x-chips above

 If III-V material is grown on silicon <100> or <111> substrate, a TMAH etches silicon underneath x-chips while not etching III-V material

Substrate	Release Layer	Release Agent
Silicon on Insulator (SOI)	Buried Oxide (BOX) of SOI	HF (conc.)
GaAs	AlGaAs	HF or HCI
Si (111)	Si (111)	KOH or TMAH (hot)
GaAs	InAlP	HCI
InP	InGa(Al)As	FeCl3 or H3PO4:H2O2 or citric acid: peroxide
InP (InGaAs)	InP	HCI
Silicon on Insulator (SOI)	Si (100)	KOH or TMAH (hot)

Table of Release systems

Device Singulation/Definition

Singulate devices by etching through the device layer(s) and landing on the release layer.

* For photoresist tethers, the etch will land on the handle rather than the release layer.

Create Anchor-Tether System

X-FAB MTP process

Our partner company X-FAB Erfurt has developed a pilot line for MTP

- Industry first pilot line for the integration of smart systems by MTP.
- XFAB is currently integrating Customer Specific projects into their pilot line.
- XFAB and X-Celeprint are currently working to develop a PDK for the XT018 print ready process.

Micro-Transfer-Printing – Application examples

ASIC integration enabling Systemin-Package solutions

Heterogeneous integration of GaAs Hall plates for magnetic sensors

Optical filters for photosensitive sensors

https://www.xfab.com/technology/wlp-3d-int

MTP Stamp Construction

- 1. A stamp master is fabricated in silicon with standard fab photo processes
- 2. PDMS is cast between the stamp master and a sheet of glass in a glass mold.
- 3. The assembly is cured and the glass and PDMS are separated from the stamp master.

Geometric Magnification

Total Number of Indexes = Number of Picks (X) * Number of Picks (Y)

- Devices can be fabricated at any foundry on the device's native substrate and can be densely packed.
- A custom stamp matches the pitch of the receiving substrate in X and Y dimension.
- X-chips are spaced on a source wafer with a pitch matching a target substrate spacing.
 - In the example above, every third x-Chip in the X dimension and every fifth x-Chip in the Y dimension are printed at a time.
 - 15 separate prints steps transfer all of the x-Chips.

- Stamp posts adhere to x-chips via van der Waals force
- Stamp visco-elastic behavior* enables:
 - Fast separation speed in pick-up regime
 - Slow separation speed in printing regime
- Lifting stamp breaks tethers and removes x-chips
- Massively parallel selective pick-up and transfer of thousands of x-chips
- Readily transfers ultra-thin x-chips

- Stamp contacts destination substrate and x-Chips stick to new surface
- X-Chips placed with controllable pitch and pattern
- A relative "slow" separation speed is used in the 10s of um range to print the x-Chip to the substrate.

*Meitl, M. A., Zhu, Z.-T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., ... Rogers, J. A. (2006). Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 5(1), 33–38. https://doi.org/10.1038/nmat1532

Second print sequence

Third, Fourth and Fifth Prints – Note fifth print starts new destination wafer

First print of second type of x-Chip on previously printed wafer

- MTP enables a variety of x-Chips to be printed on the same target wafer.
- The x-Chips can be of the same material type or a different material type.
- Different x-Chips can perform a different function, i.e., one x-Chip could be a laser, while another could be a sensor.

MTP Print Tool

- Currently there are two companies producing print tools:
 - X Display Company
 - ASM/Amicra
- All print tools are built to provide:
 - Robust, automated toolset for mass-transfer including proprietary stamp, motion platform, and optics for precision alignment.
 - MES (manufacturing execution system) interfaceable
 - Demonstrated >15,000 transfer cycles per stamp
 - CMOS fab-compatibility
 - 200 300 mm capability
- Gen 4.5 Panel print tools under development

Fully automated 200mm tool offered by X Display Company

ASM 🛞 AMICRA Nova+ MTP Manufacturing System

- Features
- Fully automatic high-volume manufacturing system
 - ISO 4 clean room class
 - Up to 300x300mm source wafer
 - Up to 450x450mm destination substrate (wafer or panel)
 - 50x50mm (max) stamp array
 - ~40 sec cycle time for 1 stamp transfer with 2-point alignment
 - \pm 1.5µm @ 3 σ placement accuracy
 - Dual bond head system
 - Look-through bond head
 - Automatic tip-tilt adjustment
- Additional• AFC+ for R&D and low volume manufacturingASM AMICRA• NANO: ± 0.5μm @ 3σ placement accuracyMTP Systems~40-65 sec cycle time, 20x20mm (max) stamp array

Contact Johann Weinhändler: Johann.Weinhaendler@asmpt.com

Nova+ MTP Manufacturing System

MTP Stamp

Micro Transfer Printing in Action

Printing an array of 20x28 devices onto a silicon target substrate

Objective field of view shows 1 field.

1. pick-up,

- 2. print,
- 3. clean.

[repeat]

Play Video

MTP Target Substrate

- MTP target substrates can be a variety of materials (Si, glass, plastic, ceramic) and surfaces (smooth, rough etc.)
- Target use is dependent on the application.
 - x-chip onto 2.5D interposer (Heterogeneous Integration)
 - x-chip onto silicon device wafer (chip-on-chip) i.e., 3D

Demonstrated Target Substrates

- Silicon CMOS Smooth
- Glass
- Plastic

- Rough surfaces
- Ceramic
- Non-planar

surfaces

x-Chip on IC wafer Chip-on-chip 3D

x-Chips for Heterogeneous Integration, i.e., 2.5D interposer

- Printable devices can be made in many important technologies
 - o Gallium Arsenide, Gallium Nitride, Indium Phosphide and Silicon

Ultra-Thin X-Chips Enable Standard Thin Film Interconnect

Create seed metal and then electrochemically grow Cu on seed metal where desired to interconnect printed devices with wafer

Printed Devices Ready for TF interconnect

<u>High-Brightness Displays Made with</u> <u>Micro-Transfer Printed Flip-Chip microLEDs</u>

Cross section of micro-transfer printed device

MTP for Bumped Devices & Modules

MTP printed devices can be connected and bumped with standard semiconductor processing

Package

MTP Print Yield for Semprius Solar Cells

- Fabricated surface mountable package with 600 μm, 3J solar cell
- Smaller cell provides competitive advantages in concentrated photovoltaics
- Thousands of target wafers printed in pilot production
- Highly reliable package, >25 billion cell hours in field, passed rigorous reliability testing

Print Yield Distribution of 105 interposer wafers

- Sample of 105 interposer wafers, 4866 die per wafer
- Solar cells printed from 150 mm GaAs wafer to 150 mm ceramic wafer
- Printed with a 24x24 post array stamp, 13 print cycles per target wafer
- Average print yield of 99.3%

24.5 kW CPV system

150 mm ceramic wafer with4866 printed solar cells

MTP Reliability Data

- Many tests were completed on the Semprius solar modules
- These modules consisted of 3J solar cells printed to rough Alumina ceramic wafers with a 3um print adhesive.
- All testing showed passing reliability results.
- No system degradation was noted at multiple sites. Below is a review of the Tucson Arizona site after more than 3 years.

- 1 kW system Installed in November 2011
- Plots taken after cleaning, but ignores effects of temperature and spectrum

No measureable degradation after 40 months on sun

IEC 62108 Testing (as of Jan 2013)		
Section	Test Description	Status
10.3	Ground Path Continuity	PASS
10.4	Electrical Insulation	PASS
10.5	Wet Insulation	PASS
10.6	Thermal Cycling	PASS
10.7	Damp Heat	PASS
10.8	Humidity Freeze	PASS
10.9	Hail Impact	PASS
10.10	Water Spray	PASS
10.11	Bypass Diode Thermal	PASS
10.12	Robustness of Termination	PASS
10.13	Mechanical Load	PASS
10.14	Off-Axis Beam Damage	PASS
10.15	UV-Conditioning	PASS
10.16	Outdoor Exposure	PASS

All IEC testing of CPV modules passed

MTP Print Yield – Display Print Drivers on Glass

0.9995867

0.0001685

0.0000435

0.99968

15

768 μlCs per print cycle, 60 print cycles

Displacement distribution of 1 display

Print yield of 15 displays, each with 46,080 µICs

- 15 displays were made (>690k transferred devices)
- Mean print yield: 99.96%
- Displacement at 3σ : +/- 1.5um

MTP Print Repair

Printing repair can be achieved post printing of the target substrate in multiple ways using a single post stamp to pick-and-print single chips depending on the final yield need.

- Printing to a non-printed site with no defects
 - Defect on source prevents x-Chip printing.
 - Defect on the bottom of the x-Chip prevents x-Chip printing
- A second site printing site on target if primary site is defective
 - A defect on the target site prevents printing
 - A defective x-Chip has been printed
- Redundant device printing compensates for "defective" chips
 - Useful for an application that needs 100% yield

MTP Applications

Printed Multi-junction Solar Cell

24.5 kW CPV system

module arrays on factory floor, ready for shipping

- Smaller cell provides competitive advantages in concentrated photovoltaics
- 600 μm, 3-junction solar cell uses MTP to fabricate surface-mountable package
- Thousands of target wafers printed to date
- Highly reliable package, >25 billion cell hours in field, passed rigorous chamber testing

RF GaN HEMTs onto Silicon CMOS

- 5G /RF Single Pole Single Throw (SPST) switch of GaN on SOI
- <0.4 dB insertion loss up to 30 GHz
- 59% reduction in vertical capacitive coupling
- Performance attributed to ability of placing GaN on SOI

<u>RF Small and large signal characterization of a 3D integrated GaN/RF-SOI SPST switch</u> RF SPST Switch Based on Innovative Heterogeneous GaN/SOI Integration Technique

S

GaN Power Electronics Integrated on CMOS

GaN HEMTs Integrated onto CMOS

GaN-on-Si Release Process

Ready-to-print GaN HEMT

Source

- Integration of GaN HEMTs onto Silicon CMOS by Micro Transfer Printing
 - Printing GaN HEMTs onto Silicon CMOS

GaN HEMT printed and interconnected on Si CMOS

Photonic Integrated Circuit (PIC)

- **Benefits:** Efficient assembly of multiple heterogeneous materials Lasers, modulators, detectors, driver ICs (analog and logic)
 - **Precision alignment at each step** *Efficient coupling of devices to waveguide wafers*
 - Mass Transfer Scales to high device count as data demands continue to rise
 - Minimized device sizes

Significant savings of expensive III-V materials

Lasers

Photonics Lasers

Transfer-Printed InP Lasers

Source

Loi, Ruggero, et al. "Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates." *IEEE Photonics Journal* 8.6 (2016): 1-10.

Power 3D IC

Benefits: • Disaggregation and tight reintegration of many gate drivers and power transistors

- Minimizes parasitics -*Increases switching frequency, density, transient response and efficiency*
- Enables high-performance multi-stage hybrid topologies
- Cost reduction

Produces 3D ICs which resemble conventional 2D ICs (using conventional packaging)

Option #1

Power transistor x-chips Tightly-packed SOI, GaAs, GaN **Monolithic die**

CMOS IC Gate drivers, control, protection & monitoring

Option #2

Secure IC

Benefits:

- Integrate x-Chips in trusted US advanced packaging facilities Using source wafers produced in US and overseas foundries
 - **Provides hardware-based quantifiable assurance** For cutting edge ICs produced in untrusted fabs
 - **MTP allows for <u>disaggregated</u>** arrays of security x-chips Further obfuscate functionality

X-Celeprint's Work-in-Progress

- Large x-Chips over 1mm x 1mm up to 4.5mm x 2.5mm
 - Currently releasing up to 1mm x 1mm square x-Chips and 1.5mm x 100um x-Chips
 - Thick chiplets between 50um 150um thick
 - Currently picking up only released chips proven up to 20um
 - Transfer Print from bulk material
 - Standard silicon wafers with no oxide layer
 - III-V material from native substrates
 - Currently using a release layer to undercut chiplets
 - Through x-Chip interconnect
 - To allow for additional connectivity through the x-Chip

Alignment

X-Chip

- Roadmap to improve alignment accuracy to 0.5um 3 sigma
 - Currently printing to 1.5um 3 sigma

Summary: Micro-transfer Printing of x-Chips

Small devices

- At least as small as 3 μm x 3 μm x 200 nm, and likely much smaller
- As large as 1 mm x 1 mm, and likely larger
- High throughput
 - Up to 65,000 devices printed simultaneously in 1 cycle
 - 30 s per cycle
 - ~7M devices printed per hour
- High yield
 - >99.9% per print cycle
 - Precision repair → <u>effective 100% yield</u>
- High accuracy
 - Demonstrated 1.5 μm @ 3σ
 - Working towards 500 nm
- Small pitch
 - Down to 2 μm
- Substrate flexibility
 - Materials-agnostic
 - Demonstrated print on Si, glass, ceramic, plastic, smooth, & rough surfaces

- Heterogeneously integrate different components
 on one substrate
 - Materials-agnostic
 - E.g., sensors, LEDs, lasers, interconnects, MEMS, etc.
- **Deterministically disperse devices** produced at high density on target surface
- Vertically stack chip-on-chip 3D
 - For 3D HI devices
 - For multi-junction solar cells
- Simple thin film interconnect
- End product is highly **customizable and modular**
- Cost-effective
 - Efficient use of material
 - High throughput

Key References by X-Celeprint and select partners

- Interposing of Microelectronics by Micro Transfer Printing to Create 3-D Structures
- <u>Transfer-printing for heterogeneous integration</u>
- Manufacturing Capability of Micro-Transfer Printing
- <u>Scalability and Yield in Elastomer Stamp Micro-Transfer-Printing</u>
- Fan-Out Packaging of Microdevices Assembled Using Micro-Transfer Printing
- <u>Transfer printing by kinetic control of adhesion to an elastomeric stamp</u>
- <u>Kinetically controlled, adhesiveless transfer printing using microstructured stamps</u>
- Process capability and elastomer stamp lifetime in micro transfer printing
- <u>Transferred III-V materials-novel devices and integration</u>