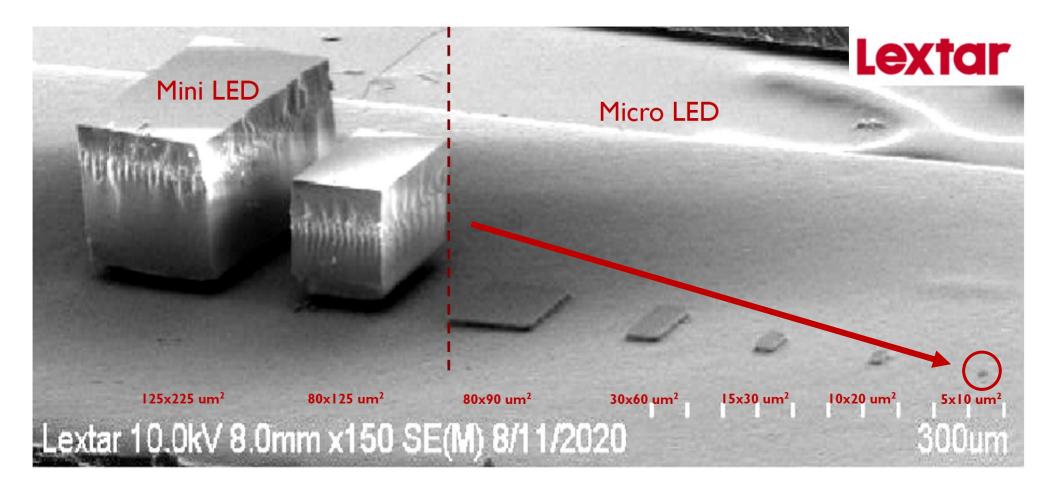
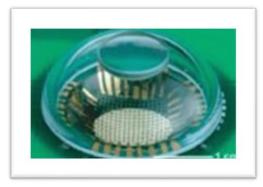


Micro Transfer Printing (MTP) for Photonics


Tiny Heterogenous Components Integrated on a Single Substrate

Presenter Event Date

Tiny Components Make MTP Possible



Now the Possibilities are Endless

ELECTRONIC EYE CAMERA

Compressible silicon optoelectronics printed onto a hemispherical glass lens substrate for use as the world's smallest fisheye camera

BENDABLE PHOTOVOLTAICS

Bendable arrays of silicon solar microcells printed on foreign substrates to enable self-powered sensors, servos, and signals everywhere

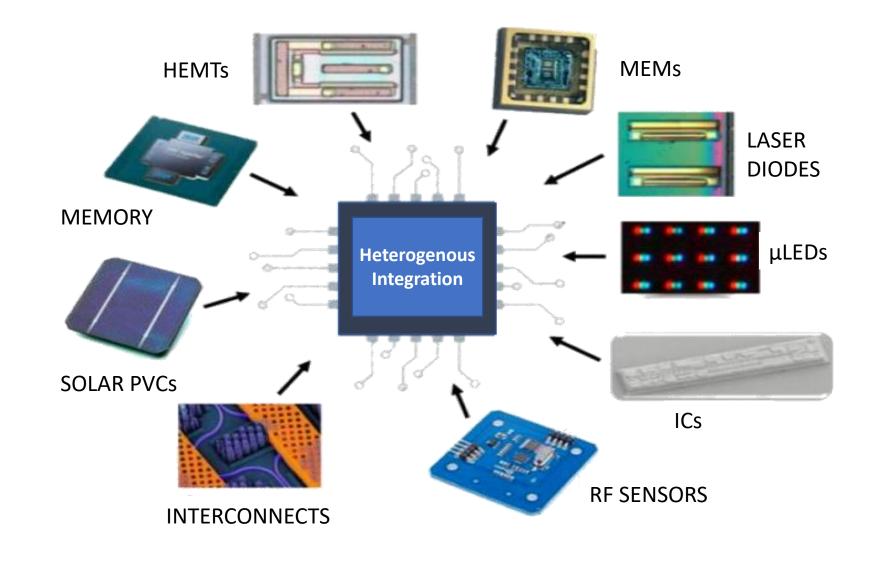
IN VIVO SENSORS

In vivo sensors used in integrated balloon catheters for heart mapping and ablation, as well as glucose or blood pressure monitoring

FLEXED LED ARRAY

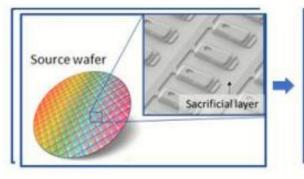
Ultrathin microscale blue LEDs printed on flexible plastic for untold illumination and signaling applications

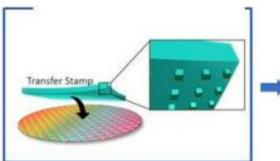
Source: https://www.nature.com/articles/s41528-018-0037-x.pdf

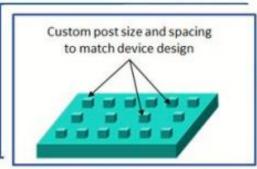

"What the industry needs are micro-devices from a variety of source wafers micro-assembled on a non-native substrate."

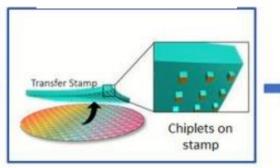
(Exactly what we do)

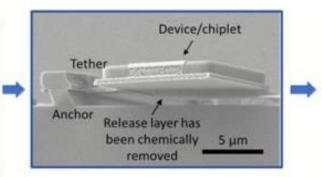
Micro Transfer Printing Capabilities

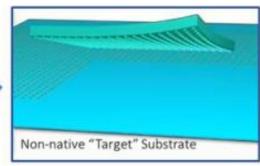



Heterogeneous Integration 101


Step 1: Fabricate x-chip devices with sacrificial under layer and tether system.


Step 4: Align stamp with devices to be transferred.


Step 2: Create custom tailored stamp to transfer devices


Step 5: Lift stamp and break tethers, removing devices.


Step 3: Chemical etch of sacrificial layer on source wafer, creating suspended devices.

Step 6: Stamp contacts target wafer and transfers devices.

Repeat for as many devices or designs as needed.

Fully Assembled Solution

Compare the Specs

Less Waste & Minimal Packaging = Lower Cost & Increased Efficiency

	Flip-Chip State-of-the-Art	МТР	Improvement with X-Celeprint
Minimum chiplet size	500 μm x 500 μm	< 5 μm x 5 μm 🗧	>10,000x smaller area
Chiplet spacing	100 µm	~ 10-20 μm 🛛	~ 10x tighter spacing
Chiplet thickness	100 µm	< 1 µm 🛛	>100x thinner
Chiplets assembled per die	2 - 100	>1,000	>10x higher density of equivalent-sized chips
Throughput	1 chiplet at a time	60,000+ chiplets at a time	60,000x more efficient
SWaP – Array size and weight	-	30,000 x 30,000	Up to 10 ² -10 ⁶ x smaller overall footprint

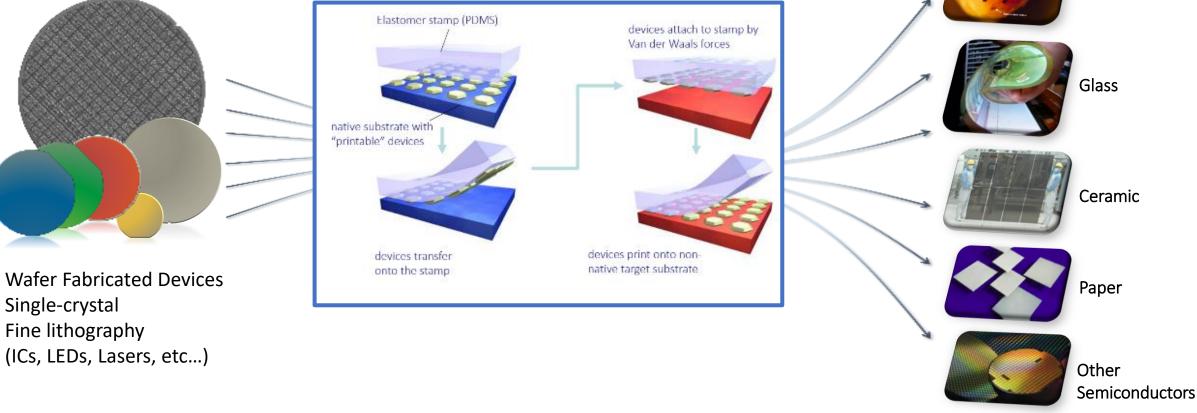
Client Projects

Industry: Manufacturing? Location: Germany? Final Product: Device?

- VCSEL and photodiode integration
- 83 um x 83 um VCSEL
- ~1000 transferred / minute - in pilot stage
- Densely integrated system

Industry: Country: Final Product:

- Laser integration to Si waveguide
- 80 um x 350 um Laser
- ~750 transferred / minute, nearing production
- Low volume / lowmass device

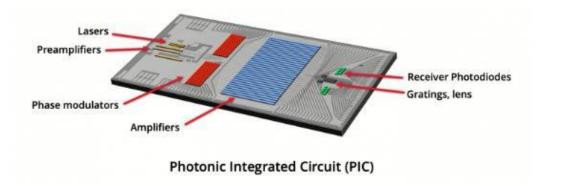

Industry: Country: Final Product:

- Laser and acoustic modulator on Si waveguide
- 950 um x 126 um Laser
- ~15 transferred / minute - in pilot stage
- III/V integration with Si
 - Product size
 - Source utilization

All aligned with <1.0 um 3-sigma accuracy

Micro-Assembly for Wafer Fab Devices

Less Waste | Minimal Packaging | High Efficiency | Lower Cost | Faster to Market



Plastic

10

Thank You Questions?

Contact Us

- info@xceleprint.com
- Visit our website https://x-celeprint.com
- We're always available to answer any questions that come up after the presentation.

About X-Celeprint

- Headquarters in Ireland and U.S.
- 625 patents and applications held globally
- Services:
 - Design Support
 - Assembly
 - Prototyping
 - Printing Resources
- 20+ printers world-wide from X Display Company and ASM/Amicra
- XX number of current customers around the globe
- Contracts with the government, academia and many commercial companies